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Some physical, mathematical and evolutionary aspects of biological

pattern formation

By A. GIERER
Max-Planck-Institut fiir Virusforschung, 74 Tiibingen, Spemannstrasse 35/1V, Germany

An important mechanism in the generation of biological structures is the production of
defined spatial patterns within initially near-uniform cells and tissues. This process
can be modelled on the basis of conventional molecular kinetics if there is a short-
range activating effect in conjunction with depletion or inhibition extending over a
wider range (‘lateral inhibition’). Such pattern-generating systems exhibit simple self-
regulatory properties empirically observed in developmental biology such as polarity
effects, proportion regulation and the inducibility of secondary centres.

Autocatalysis and lateral inhibition have been shown to be mathematically necessary
for the simplest two-factor case. Certain generalizations of these conditions to multi-
componentsystemsare possible ; they are suitable for modelling intercalary regeneration.

The evolution of higher organisms seems to be determined to a considerable extent
by many small changes of patterns and proportions. While evolution proceeds at
varying rates in the course of time, the rate-limiting steps may be due to mutations of
low selection pressure. A semi-quantitative argument suggests that there might be an
upper limit of evolutionarily effective genetic complexity.
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1. TYPES AND FEATURES OF BIOLOGICAL PATTERN FORMATION

One of the most interesting aspects of higher organisms, aside from behaviour, is their specific
spatial structure, which is produced anew in each generation. Several quite different mechanisms
contribute to the generation of structure during development, including self-assembly (the
movement and interaction of cells or cell constituents until a defined energetically favourable
configuration is attained) and the conversion of order in time into order in space (as in the
consecutive formation of a linear array of structures). Of particular importance, however, is the
‘morpholactic’ generation of defined spatial structures within originally nearly uniform cells or
tissues. This latter mechanism often shows impressive self-regulatory properties, including the
capacity of parts to form wholes at reduced size, such as a complete organism from half of an
early embryo; and the inducibility of secondary centres, such as an embryonic axis leading to a
second head. To explain such pattern generation one has to postulate the formation of morpho-
genetic fields (that is, spatial distributions of some physical parameters, possibly though not
necessarily the concentrations of morphogenetic substances) that precede and elicit local
responses of cells, giving rise to visible pattern and form (Child 1929; Wolpert 1971).

A classical model system for the demonstration of the existence and regulation of morpho-
genetic fields is the regeneration of the coelenterate hydra from sections cut from the gastric
column; the initially near-uniform tissue regenerates a new animal with head and foot (figure 1).
The part of the regenerate that was closest to the original head acquires head-activating
potential in a rapid process long before the actual head is produced (Webster & Wolpert 1966),
thus indicating that a morphogenetic field is formed that precedes and directs head formation.
The orientation of the field is determined by some asymmetric pre-existing property in hydra
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430 A. GIERER

tissue, probably by a polarity-defining gradient extending from head to foot (Gierer et al. 1972).
The pre-existing polarity-defining gradient, however, cannot itself act as morphogenetic field,
because the same subarea of the animal can form either head or foot upon regeneration de-
pending on how the section was cut (see figure 1). Rather the morphogenetic field must be
formed anew after the onset of regeneration in a rapid process involving cell-communication
within the regenerating tissue. Despite its simplicity, the scheme in figure 1 embodies a number
of elementary features that a consistent theory of biological pattern formation must incorporate.

|
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FIGURE 1. Some elementary properties of pattern formation, exemplified, schematically, by regenerating hydra
tissue. Hydra is a polar animal, with head (H), gastric column (1...4), budding region (B) and peduncle (P).
Any section cut from the gastric column (if it exceeds a minimal size) is able to regenerate an animal with
head and foot. Heads form at the area closest to the original head. The same area of the original animal
(arrow) can form a head or foot depending on the position of the cuts. It follows that the pattern is formed
anew during regeneration and that the position of the head cannot be determined by a local cell property or
the existence of a cut, of both; rather, a morphogenetic field is newly and rapidly formed at the onset of
regeneration, activating the future head area. Its orientation, but not its form, is determined by a pre-
existing slightly asymmetric distribution in the gastric column of the polar animal.

Although the detailed chemical basis of morphogenetic fields is still unknown, one may
nevertheless study requirements and properties of pattern-generating systems on the basis of a
rather general and non-committal assumption about the type of physics involved, namely that
morphogenetic fields are generated by molecular interactions and movements. Physical laws
applicable to a wide variety of these processes are such that concentrations of compounds change
in time as function of local concentrations (to account for interaction) and of the spatial
distribution of substances (to account for movements due to diffusion, convection, etc.). This
form imposes stringent constraints on the construction of theories and models. Can spatial
concentration patterns be formed at all on this basis? This was first shown by Turing (1952)
who found that, if there are at least two components interacting auto- and cross-catalytically,
patterns can be generated. Several groups have since then further developed the mathematics of
this process, especially with respect to stability analysis (see Prigogine & Nicolis 1971).

[4]
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2. PATTERN FORMATION BY AUTOCATALYSIS AND LATERAL INHIBITION

Is molecular kinetics adequate for the explanation of biological patterns? To study this
question, H. Meinhardt and I have searched for properties of molecular systems required for the
formation of distinct spatial patterns from near-uniform conditions and for the self-regulation
found experimentally in developing organisms (Gierer & Meinhardt 1972, 1974). The set of
conditions listed in table 1 emerged from these studies: out of two components, one must be

TABLE 1. CONDITIONS FOR PATTERN FORMATION BASED ON AUTOCATALYSIS AND
LATERAL INHIBITION (FOR TWO-COMPONENT SYSTEMS)
(a) One of the two components A, B (say A) must be self-enhancing.
(b) The other component (B) must be cross-inhibiting; inhibition can be replaced by
depletion of a substrate required for, and consumed by activation.
(¢) The inhibitory effect must be sufficiently strong to ensure stability of the uniform solution.
(d) The inhibitory effect must be relatively fast compared to the activating effect.

(¢) The range of activation must be below a limit of the order of total field size.
(f) The range of inhibition must be sufficiently large in relation to the range of activation.

activating in the sense of self-enhancement, the other cross-inhibiting, either directly or in-
directly via depletion of a substrate required for and consumed by activation. The inhibitory
effect must be sufficiently fast and strong to prevent an overall autocatalytic explosion of the
system. An essential concept of the theory is range, defined as the mean distance between pro-
duction and decay of molecules. (Range can be expressed in terms of physico-chemical
properties, such as diffusion constants and decay rates.) The range of activation must be small
in relation to total field size, and the range of inhibition must be large in relation to the range of
activation (the latter condition has been called ‘lateral inhibition’ by analogy with the use of the
term in neurophysiology and the field of pattern recognition). If these conditions are met, a
small deviation from an initially near-uniform distribution will be self-enhancing; however,
activation at one site leads to deactivation elsewhere, because of the long-range inhibitory
effect. The local increase and spatial confinement of activation will proceed until saturation or
diffusion effects stabilize the pattern. The form of the pattern is eventually determined by the
ranges of activation and inhibition; the simplest form is a gradient, but symmetric and periodic
distributions in one or several dimensions can also be generated.

These conditions can be given a mathematical form, which is particularly simple if power
terms dominate expressions for production and decay rates of molecules, and which allows the
assessment of models for pattern formation. All the models that we have studied were generated
in this way. One example is a model in which an activator and an inhibitor are produced by
enzymes that undergo an allosteric transition to the active state by association with two acti-
vator molecules, this process being responsible for autocatalysis; the inhibitor is assumed to
inhibit the activating enzyme and has a wider range, owing to diffusion, than the activator.
This is only one of many possible models, and only biochemistry can provide proof for a particu-
lar mechanism. Some nonlinear reaction is generally required, but only well known features of
molecular biology are necessary, though in some special combinations.

(5]
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3. PATTERN_ REGULATION, INCLUDING PROPORTION REGULATION BY
ADAPTATION OF THE METRIC

Computer calculations demonstrate that such pattern-forming systems exhibit self-regulatory
features experimentally observed in biological systems (figure 2). A graded distribution can be
formed, starting from near-uniform initial conditions with the orientation defined by some
pre-existing cues to asymmetry, however slight, whereas the form is invariant to details of the
initial conditions. In larger fields, symmetric and periodic patterns can arise. Induction of
secondary centres can occur, depending both on the strength of an inducing stimulus and its
distance from the primary centre. Aside from modelling for qualitative self-regulatory features
of development, quantitative aspects have been simulated for several systems, including hydra
regeneration (Gierer & Meinhardt 1972; Meinhardt & Gierer 1974).

A particularly interesting regulatory property is proportion regulation, the capacity of parts
to develop all structures at reduced size. A simple model is to assume that activator production
cannot exceed a saturation level; in this case the area of near-maximal activation adapts in
proportion to total size. While this leads to proportion regulation of a substructure within a
given area, it does not give rise to exact proportion regulation of a morphogenetic gradient
specifying positional information at intermediate levels.

Whether exact proportion regulation of morphogenetic gradients occurs in biology is not yet
known, but this property can also be incorporated into models of the lateral inhibition type.
The approach is based on the idea that the primary formation of a gradient itself determines the
metric of the system (Gierer 1981). Let us assume that we start with a high degree of cell
communication, owing to many open intercellular junctions, leading to a mean range of
activators above the upper limit consistent with pattern formation within the size of the field
(see condition (e), table 1). If cell communication is gradually reduced so that the range of
activation drops below the upper limit for pattern formation, a gradient will be formed with
high activation in part of the field. If we assume that this activation then induces a wave across
the entire tissue that stops further closure of junctions, a stable morphogenetic gradient results.
The gradient exhibits good size-regulating properties in that smaller fields form, at a state of
more reduced cell communication, a steeper proportion-regulated gradient. An interesting
feature of this type of model is that the degree of cell communication, and thus the metric of the
tissue with respect to ranges of molecules, is now adapted to total size. This may lead to pro-
portion regulation of any aspect of pattern formation, including proportion regulation of
repeating structures: if, after formation of the primary gradient, a secondary periodic pattern is
initiated, which forms, say, eight peaks, then the same eight peaks can be produced in the
smaller section with reduced distances. Possibly proportion regulation of somite spacing
(Cooke 1975) might be of this type.

4. TWO-DIMENSIONAL PATTERNS

The theory can be extended to more than one dimension. Figure 3 shows some types of
patterns in two-dimensional fields such as cell sheets. A graded distribution (figure 3¢) may
define positional information in one dimension, and a second pattern-forming system of this
type can then lead to a Cartesian specification of a two-dimensional field. If the ratio of field
size to activator range is higher, symmetric patterns (figure 35) or multiple peaks can be formed.

[6]
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Ficure 2. Pattern formation and regulation on the basis of autocatalysis and lateral inhibition. , Activator
distribution. Dimension left to right describes position within tissue; development of the pattern in the course
of time is plotted in the dimension front to rear. (¢) A monotonic gradient is generated starting from aear-
uniform initial distribution; a slight fluctuation (left) suffices for initiation. Activation (left) proceeds at the
expense of the deactivation (right), leading to a stable gradient. () Its form is nearly independent of initial
conditions: a shallow gradient (A— A— A) of sources (e.g. an enzyme synthesizing activators and inhibitors)
can also determine the orientation of the pattern generated, though its form is almost independent of the
source distribution. (¢) Model for induction: a small stimulus can give rise to the formation of a secondary
peak of activation if the stimulus exceeds threshold (which, in turn, decreases with distance from the pre-
existing head). ———, Inhibitor distribution extending from the head at the onset of induction. (d) If the range
of activator is small compared with the total field size, a periodic pattern can be obtained if initiated by a
stimulus at one margin. (¢, f) Model for size regulation by activator saturation; activated area adapts nearly
proportionally to total size of the field. (g, ) A more precise proportional regulation of a graded distribution
(and of any secondary pattern initiated in the field including periodic patterns) could be obtained by regu-
lation of the metric: starting from a state with a strong cell communication and thus with large diffusion
ranges of activator above the limit consistent with pattern formation, cell communication is assumed to be
gradually reduced, e.g. by closure of intercellular junctions; at some stage of this reduction, pattern formation
occurs, leading to a graded distribution. If the corresponding activation triggers a signal that causes the
reduction of cell communication to stop in the entire area, a stable gradient is obtained (g). This mechanism
is size-regulating, leading, in smaller sections, to correspondingly steeper gradients formed at a stage of more
reduced cell communication (). (i) An example of a symmetric pattern initiated by random fluctuation
superimposed on a graded distribution.

Recursive initiation of multiple peaks starting at the centre or a margin leads to regular spacing
(figure 3¢, ¢, f), whereas random initiation produces a distribution that is less regular (figure 3d),
but which shows, owing to lateral inhibition, second-order statistics excluding small distances.

(7]
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(a) (b) (c)

(f)
Ficure 3. Pattern formation in two dimensions, e.g. within cell sheets. Final distributions are plotted. () Mono-
tonic gradient. (b) Single peak of activity calculated on a sphere, simulating the activation of an area of a cell
sheet; the model may apply to closed cell sheets but also to intracellular and intramembrane patterns generat-
ing polar cells. Their orientation can be determined by some shallow external gradient initiating the intra-
cellular pattern. (c) Multi-peak pattern initiated at one point leading to near-regular distances. (d) Randomly
initiated multi-peak pattern. Positions of peaks are random, but small distances are systematically avoided.

(,f) On a growing cylinder, peaks of activity can be produced on alternating sites. This spacing is found, for
example, for buds in hydra, and for leaf rudiments in many plants.

5. EFFECTS OF MORPHOGENETIC FIELDS ON CELL DIFFERENTIATION
AND REAL FORM

Morphogenetic fields are expected to exert effects on determination, proliferation, movement,
form and death of cells. Determination may occur with probabilities proportional to field values
giving rise to smooth distributions; or, above certain thresholds of morphogenetic fields, thus
dividing an area into subareas with different states of differentiation separated by distinct
boundaries. It is expected that the same or similar field-forming mechanisms can give rise to
subpatterns in subsystems. In this way a complex pattern could be laid down in a combina-
torial fashion (Kauffmann 1973; Gierer 1973; Garcia-Bellido 1975).

Perhaps the most interesting effect of morphogenetic fields is in the generation of real form.
Form is determined by the spatial distribution of curvatures that define the contour of organs
and organisms. Biological form can result from a large variety of mechanisms. A simple proto-
type is the activation of areas within initially nearly flat cell sheets, caused by internal morpho-
genetic fields or external induction by neighbouring tissues; this local activation then generates
bending moments leading to curvature and form. The self-regulatory feature of such processes,
for example effects of reversible inhibition, suggests that in the generation of curvature and
form a steady state is approached that is describable as a state minimum general potential;

[8]
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this, in turn, is a function of cell form and interactions within the cell sheet that are modified by
morphogenetic fields. Certain non-trivial features of cell interactions are required for a cell
sheet to be stable against clumping or decay. Local activation of a subarea of a stable cell sheet
by a morphogenetic field or by induction leads to evagination or invagination if one further
condition is met: that the cell sheet is anisotropic in the inside-outside dimension; this property
is often obvious by a different appearance of inside and outside boundary regions of cell layers.
Processes of evagination and invagination, as well as the generation of a elongated structures of
various types, have been modelled (figure 4) by using shell theory for the simulation of real
form (Gierer 1977).

Ficure 4. Rotationally symmetric structures formed by local activation of an area (centre-top of the structures
drawn) generating excess bending moments. Pictures represent sections through (three-dimensional) cell
sheets. The axis of rotation is vertical. Calculations were made on the basis of shell theory. (a) A single circular
area of activation (top) can lead to a complex structure owing to the interaction of curvatures in two dimen-
sions. (b, ¢) Evagination from a closed sphere, resulting from activation of a small area on the top. Such models
can be applied to cell sheets to model tissue form as well as to membranes and boundaries of single cells to
model cell form. (d) If there are two degrees of activation, a strong one in a small circular area (top) and a
weaker one extending into the surrounding area, an elongated structure such as a protruding bud can be
produced.

6. MATHEMATICAL REQUIREMENT FOR AUTOCATALYSIS AND LATERAL
INHIBITION IN TWO-FACTOR PATTERN-FORMING SYSTEMS

The conditions for pattern formation by autocatalysis and lateral inhibition have been
derived from considerations of the qualitative behaviour of two-component systems. Patterns
cannot arise starting from near-uniform distributions with stable average values if any one of the
conditions described in table -1 is extremely violated and must evolve if all of them are met
asymptotically. How does this approach relate to the analytical methods of general stability
theory (Prigogine & Nicolis 1971; Babloyantz & Hiernaux 1975)? Granero et al. (1977) have
applied this theory to the equations that we have used in most simulations of biological patterns,
and confirmed the conditions of autocatalysis and lateral inhibition. As has been shown
recently (Gierer 1981), the correspondence of the conditions of autocatalysis and lateral
inhibition to the theory of destabilization is a much more general one. The linear approximations
of the equations for deviations from the uniform solution can be transformed in such a way that
they are expressed in the concepts of the ‘lateral inhibition’ theory: rates as reciprocal mean
lifetimes of molecules; ranges as mean distances between production and decay; orders of

[9]
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reactions in terms of logarithmic derivatives of production and decay rates of molecules. To the
equations thus derived, a classification of models according to signs of parameters can be
applied, taking into account that the effect of diffusion and other modes of redistribution is
always to counteract distortions. On this basis, conditions (a)—(f) in table 1 can be derived
point by point irrespective of details of models. No principally different models, say with long-
range activation and short-range inhibition, can lead to pattern formation for the two-factor
case. The conditions apply to mechanisms involving redistribution by diffusion, convection or
other processes. Inclusion of vectorial effects such as orientation of ion pumps as proposed by
Jaffe (1968) would require an extended formalism. These mechanisms are an attractive
possibility for the explanation of polar cells. On the other hand, it seems unlikely that the
regulatory properties of tissue morphogenesis are explicable by such pumping mechanisms.

7. EXTENSION OF THE ‘LATERAL INHIBITION’ THEORY TO MORE THAN
TWO COMPONENTS

Can one extend the scheme of lateral inhibition to more than two components ? The principal
difficulty is to define activation and inhibition unambiguously in multi-component schemes; for
instance, activation may result from inhibition of inhibition. A generalization is possible, how-
ever, in cases in which two subsets of components can be distinguished from the outset according
to the range of redistribution (Gierer 1981). If one subset, characterized by short ranges, has
activating properties (defined by the existence of at least one positive diagonal term after
diagonalization of this subset) and if the other subset prevents, by cross-inhibition, an overall
autocatalytic explosion, then sufficient redistribution of the components of the cross-inhibitory
subset always leads to destabilization of uniform distributions and thus to spatial patterns. In
this case, short-range activation and long-range inhibition represent features of subsystems of
several components rather than properties of individual substances.

Multicomponent pattern-forming systems allow us to model for features of developing systems
that generate a spatial sequence of structures by mutual or consecutive induction (Meinhardt &
Gierer 1980). The simplest example is the symmetric subdivision of an area into two stripes by
mutual lateral activation. Let us assume that two neighbouring regions acquire different
activated states, with each region enhancing its own activation locally and supporting the
alternative activation of the neighbouring region by a more diffusible substance. Thus there are
two short-range autocatalytic substrates and two more diffusible components involved in
mutual lateral activation. In terms of the multicomponent analysis mentioned, this locally
exclusive lateral activation can be shown to be formally isomorphous to lateral inhibition.
Further generalizations along these lines lead to sequences of induction as they may be involved
in intercalary regeneration in insects (Bohn 1970).

The analysis of destabilization as such does not permit us to derive the stability or the form of
the spatial distributions produced ; these depend on the nonlinear characteristics of the system.
An analytic treatment is difficult and has been possible only for the most simple case of mono-
tonic gradients (Mimura & Nishiura 1979). However, assessment by heuristic principles can
often be confirmed by computer simulation: ranges of activator are the main determinants of
width of activated areas, and ranges of inhibitor determine distances of, or exclusion areas for,
multiple centres of activation.

In conclusion, it appears that short-range autocatalytic activation, in conjunction with long-

[10 ]
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range inhibitory effects, provides a rather general basis for the formation of concentration
patterns showing regulatory properties of developing biological systems. A wide variety of
different mechanisms is consistent with this scheme, and only biochemical evidence can decide
on a particular mechanism. Spreading and redistribution mechanisms can, but need not, be
due to molecular diffusion, and parameters of the theory need not be concentrations of indi-
vidual substances but may subsume system features of several components.

8. SOME REMARKS ON THE RELATION OF BIOLOGICAL FACTS TO
ANALYTICAL MATHEMATICS

The assumption of the approach that I have discussed here is that understanding of biological
patterns on the basis of physical laws and processes requires both formal mathematical analysis
and structural biochemical studies. Biochemistry alone does not suffice, because we cannot infer
the structure of an animal from the structures of molecules involved in its generation without
phenomenological and systems theories. On the other hand, a purely formal explanation is also
unsatisfactory, because experimental confirmation requires biochemical studies. Since this
symposium is focusing on mathematical aspects of biological development, I should like to add
some thoughts on the prospects and pitfalls of mathematics in this field. The main pitfall is
perhaps the temptation to discard or distort basic biological facts for the sake of analytical
mathematics. In extreme cases this can produce rather artificial problems far removed from the
main issues of developmental biology. A few cautioning examples will be given.

1. The orientation of most substructures arising in embryonic development, such as the tusk
or the leg of an elephant, are strictly determined by pre-existing asymmetries. The mathematical
formalism of symmetry breaking instabilities is adaptable to certain problems of biological
pattern formation; conceptually, however, it is a distinguishing feature of biological development,
as compared with the formation of many inorganic structures, that true random symmetry
breaking is 7ot involved in the more interesting aspects.

2. The self-regulatory properties of pattern-generating systems in biology suggest that
morphogenetic fields reach near-stable states; but life as such is finite. Morphogenetic fields
exert their influence on development only in a limited time span. Nonlinear equations often
lead to quasi-stable solutions. It follows that absolute stability of solutions is no valid criterion
for the quality of mathematical models for pattern formation.

3. Diffusion-coupled differential equations, which are characteristic of the theory of auto-
catalysis and lateral inhibition, have many solutions if field size is large enough to allow for
multi-peak patterns to arise. The distribution produced may then depend sensitively on
boundary conditions and the mode of initiation, and would not reproducibly be formed upon
random initiation. Its form and reproducibility may seem to present extremely intricate
mathematical problems. However, there is as yet no biological evidence that reproducibility,
multiple-peak patterns, and random initiation occur together. The evidence on genetic mosaics
(Stern 1968) suggests that morphogenetic fields leading to reproducible structures are simple
and do not depend sensitively on boundary conditions. The complexity of biological structures
appears to result from the complexity of cell responses to simple fields (perhaps gradients, see
figure 34) and from the combinatorial formation of patterns, subpatterns, sub-subpatterns, and
so on. In cases in which regularly spaced periodic patterns are reproducibly formed, as for
instance in the formation of leaf rudiments, they are not randomly initiated but produced
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sequentially in a recursive manner, the position of the youngest rudiment being defined by the
range of inhibition extending from the preceding one (see figure 3¢, f). Certain multi-peak
patterns, such as that of stomata in plant leaves, appear to be randomly initiated, but in this
case the pattern is not reproducible. Density of peaks and a tendency to avoid small distances is
conserved, but otherwise each leaf on a tree is different.

9. SOME EVOLUTIONARY ASPECTS OF MORPHOGENESIS

Despite the cautioning considerations of the preceding section, there are many real problems
of great general interest in developmental biology that could be elucidated by analytical
mathematical studies. One of the challenging problems to be solved is the dynamics of the
evolution of higher organisms, especially in relation to morphogenesis. The evolution of life
started with the emphasis on molecular evolution, particularly the invention of new and better
enzymes; the evolution of higher organisms, on the other hand, is mainly due to mutations
affecting regulation, which alter patterns and proportions of structures, or tendencies of be-
haviour as indirect consequences of the generation of the neural network. The impressive
evolution of higher organisms occurred with population numbers much lower and generation
times much higher by many orders of magnitude compared with microorganisms.

While the morphological evolution of higher organisms proceeds at varying rates in the
course of time, it is not unlikely that a stage of relatively rapid changes is preceded by an initial
phase of mutations of low (positive) selective pressure such that the latter determine, or at least
co-determine, the overall rate of evolution. For instance, if new genes and structures are
generated by gene duplication, one expects low selection pressures in the decisive initial phase
of development of new functions. If effects of mutations at different genetic loci interact in
generating selection pressure, the resulting selection pressures are also expected to be low at the
beginning of the evolution of properties resulting from the combined effects. Possibly a statistical
theory of mutants of low selection pressure affecting patterns (and, possibly, behaviour as well)
can be constructed that may contribute to the understanding of evolution. Increases in complexity
of animals in the course of evolution are broadly correlated with decreases in population size
and rate of reproduction. Further, the rate-limiting values of low selection pressures in the
initial phases of evolution of new functions are likely to decrease as the complexity of the pre-
existing genome increases. According to population genetics, decreases of population size, rate
of reproduction, and selection pressure all reduce the probability of mutants of low selection
pressure to succeed in the population. These correlations may determine an upper limit of
evolutionarily useful genetic complexity, and large higher animals as well as man might be
close to this upper limit.

The following considerations along these lines are only to suggest the existence of a limit of
complexity without claiming that the presumptions of the numerical examples are adequate.
According to population genetics, the probability that a mutant of small positive selective value
s eventually succeeds in the population is of the order of s (see Jacquard 1973). If population
size is N individuals and the geological timescale for major changes of evolutionary charac-
teristics of species is G generations, whereas the number of functional nucleotides per genome is
n, these values could be related to selection pressures s required for evolution if we introduce
assumptions on the orders of magnitudes m of the number of mutations per generation and
individual, and on the probability p for a mutation at a given site of the genome to succeed in
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the population in G generations, as requirement for evolution of new properties to proceed.
According to population genetics, this probability is approximately given by

p =~ GN(m/n) s. (1)

It is not known whether point mutations or other types of mutation such as excisions, insertions
and recombinations are rate-limiting. Effective values of p and m are difficult to estimate on the
basis of current knowledge. For the present discussion of general characteristics, we may assume
both values to be of the order of 1. Then

s~ n/GN. (2)

In higher animals, estimates of the number of genes per genome and of average number of
nucleotides per gene are both of the order of 104-10%. While the reasons for the large number of
nucleotides per gene are not yet known, and part of them may be without functions, it is not
unlikely that many of them are involved in the regulation of gene activity; they may be sites of
mutations of low selection pressure, resulting from point mutations, excisions or insertions.
Requirements for regulation are expected to increase with increasing complexity of the patterns
formed, whereas the evolutionary efficiency per mutation is likely to decrease. It is therefore
conceivable that network theories could establish a reverse relation between rate-limiting
selection pressure s and the complexity of the genome. A very simple assumption would be that
there are some /z genes per genome with some 4/ functional nucleotides per gene, and that an
approximate reverse relation holds between s on one hand and the number of genes, or the
complexity of the regulatory part of the genes on the other, leading to s ~ 1/4/z. In conjunction
with (2), the upper limit of evolutionary useful genetic complexity, #, would then be of the order
of (GN)%. If both N and G are of the order of some millions, the number of functional nucleo-
tides per genome 7 would be of the order of 103-10° and the genome would consist of several
times 10 genes. The number n can be below the total number of nucleotides per genome
because part of the latter may be without function.

While the crude quantitative assumptions introduced above still need theoretical justifi-
cation, and may prove to be inadequate, the qualitative line of thought on correlations and
anticorrelations indicates that a limit of complexity of the genome may exist and that its order of
magnitude might be estimated if a suitable statistical theory of mutations of low selection
pressure affecting patterns, proportions and behaviour could be developed.
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